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Quadratic Finite Element Method for  1D Deterministic 
Neutron Transpor t (U)  

 
Danny R. Tolar , Jr . and James M. Ferguson *    

*LLNL, L-95, PO Box 808, Livermore CA 94551 

We focus on improving the angular discretization of the angular flux for 
the one-dimensional (1D) spherical geometry neutron transport equation.  
Unlike the conventional SN method, we model the angular dependence of 
the flux with a Petrov-Galerkin finite element approximation for the 
differencing of the angular variable in developing the 1D spherical 
geometry SN equations.  That is, we use both a piecewise bi-linear and a 
quadratic function in each angular bin to approximate the angular 
dependence of the flux.  This new algorithm that we have developed shows 
faster convergence with angular resolution than conventional SN 
algorithms. (U)  

Introduction 
In the discrete ordinates, or SN, numerical solution of the transport equation, both the 

spatial and angular dependences on the angular flux are modeled discretely.  Significant 
effort has been devoted toward improving the spatial discretization of the angular flux. 
(Morel, et.al., 1996) (Greenbaum and Ferguson, 1986)  In this work, we focus on 
improving the angular discretization of the angular flux.  In the standard SN method, the 
angular dependence is modeled with a quadrature of discrete angles.  Instead, we develop 
a new algorithm using a Petrov-Galerkin finite element approximation for the 
differencing of the angular variable.  The motivation of this approach is to improve the 
convergence of the SN solution with angular resolution over conventional methods.  We 
describe this new SN scheme and reveal its power through results from two numerical test 
problems.   

Spher ical Transpor t Equation 
This 1D spherical transport equation in conservative form is given by 
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We discretize the angular variable with a set of N angular bins, with boundaries 
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, and 11 −=� .  11 −=�  is the starting direction and is 

treated separately from the other directions. (Lewis and Miller, 1993) (Lathrop, 2000)  

The angular flux for the direction nµ is nnr ψµψ =),( .  (The spatial dependence is 

omitted.) 

Conventional Methods 
The standard formulation of the SN equations involves the diamond-difference (DD) 

relationship between the angular fluxes for anglen and “half-angles”  2/1−n  and 
2/1+n : 

.2 2/12/1 −+ −= nnn ψψψ                                                                        [2] 

To preserve the solution of a uniform isotropic flux in an infinite medium 

( Σ= Sr ),( µψ ) for any quadrature set, differencing coefficients 2/1+nα  are used in the 

angular derivative term to force the two streaming terms to vanish. (Lewis and Miller, 
1993) (Lathrop, 2000)  Upon spatial differencing, we obtain the conventional SN 
equations.  In addition, Morel and Montry (1984) have developed a “weighted diamond-
difference” algorithm that is more accurate than standard DD. 

New Algor ithm Using Quadratic Finite Elements in Angle 

Our new method employs Petrov-Galerkin finite elements for ),( µψ r  in (Eq. 1).  
Specifically, we approximate the angular dependence as a combination of a continuous 
piecewise bilinear function and a continuous quadratic function of µ : 
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where 1+≤≤ nn µµµ and .1 nnn µµµ −+=∆   (Equation (3) is valid in the first angular bin 

21 µµ ≤<− .)  To obtain the discrete equations, (Eq. 3) is substituted for ),( µψ r  in  

(Eq. 1), and then we operate on (Eq. 1) by � + ⋅1

)(
n

n

d
µ

µ
µ in each angular bin; that is, 

Nn ≤≤1 .   The result is the following: 
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where ,2)( 1 nnA µµµ += + ,2)( 1 nnB µµµ += +  and nnC µµµ += +1)( .  This equation 

has one known angular flux ( nψ ) and two unknown angular fluxes ( 1+nψ  and nψ~ ).  Thus, 

we need another equation.  That equation is obtained by substituting (Eq. 3) for ),( µψ r  

in (Eq. 1), and then operating on (Eq. 1) by µµ
µ

µ
d

n

n

+ ⋅1

)( .  The result is 
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where 
2

1
2

1 32)( nnnnD µµµµµ ++= ++ , 2
1

2
1 23)( nnnnE µµµµµ ++= ++ , and 

2
1

2
1 343)( nnnnF µµµµµ ++= ++ . 

      Upon spatial differencing (Eq. 4) and (Eq. 5), we have the discretized equations for 
our quadratic finite element method.  These equations are solved similarly to the 
conventional SN equations by marching through the grid in the direction of particle 
motion.  To obtain the starting value at 1−=µ , we do a separate calculation for the first 

angular bin boundary at 1−=µ , similarly to what is done in conventional SN methods. 

(Lewis and Miller, 1993) (Lathrop, 2000)  This gives us the values for 1ψ in each radial 
zone.  This equation resembles a planar geometry transport equation.  Next, using (Eq. 4) 
and (Eq. 5), we determine the fluxes in every radial zone for the remaining angular bin 

boundaries starting with 2µ  and ending with 1+Nµ .  For the incoming directions, 

0<
n

µ , we march inward from the outer boundary to the center of the sphere.  Then, for 

the outgoing directions, 0>
n

µ , we march outward from the center to the sphere 
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boundary.  However, in this new method, two unknown fluxes exist ( 1+nψ and nψ~ ); 

thus, we must solve a system of equations given by (Eq.  4) and (Eq. 5) for each radial 
zone. 

 

Numer ical Results 
To demonstrate the strength of the quadratic finite element (QFE) method, we 

consider two test problems.  The first problem, proposed by Lathrop (2000), is a simple 
two region sphere.  The inner region contains a uniformly distributed isotropic source 
with a small total cross section.  The outer region material has a total cross section that is 
five times larger without any source.  The media in both regions are pure absorbers, so 
this problem neglects scattering.  Also, this problem does not contain energy dependence. 

For several different quadrature sets, we determine the absorption and leakage rates 
for both the weighted DD method and our new QFE scheme.  The results indicate the 
QFE method converges much faster than the weighted DD scheme with finer angular 
resolution. For example, the leakage rate from the QFE scheme is within 0.3% of the 
exact solution when using four angles.  However, the leakage rate from the weighted DD 
scheme is an enormous 49% below the analytical solution when using four angles.  Even 
for 32 angles, the leakage rate from weighted DD remains 1.7% below the exact solution.  
For QFE, the leakage rate is highly converged with just eight angles.  See Table 1 for the 
results. 

Because the number of unknowns for QFE is twice the number of unknowns for 
weighted DD, the cost of QFE is double the cost of weighted DD for a given number of 
angles.  Thus, to be equitable, QFE with N angles should be compared to weighted DD 
with 2N angles.  For example, the leakage rate from QFE is within 0.04% of the exact 
solution for eight angles, while weighted DD is within 5.4% of the exact solution for 16 
angles.  Overall, the results indicate that QFE with N angles is more closely converged to 
the exact solution than weighted DD with 2N angles. 

 

Table 1.  Lathrop’s Test Problem:  Compar ison of Leakage Rates 

Diamond 
Difference 

Angles 

Diamond 
Difference 

Leakage 
Rate 

Diamond 
Difference 

Leakage 
Error  (%) 

Quadratic 
Finite Elem. 

Angles 

Quadratic 
Finite Elem. 

Leakage 
Rate 

Quadratic 
Finite Elem. 

Leakage 
Error  (%) 

4 0.03935 49.4 2 0.06803 12.5 

8 0.06305 18.9 4 0.07757 0.24 

16 0.07356 5.4 8 0.07773 0.04 

32 0.07645 1.7 16 0.07775 0.01 
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The second problem is a modification of the Planet Critical Sphere (Pu-Met-Fast-
018).  This problem contains an inner sphere of plutonium surrounded by a layer of 
beryllium.  To study supercritical systems, we increase the beryllium thickness.  To 
model this, energy dependence, fission sources, and anisotropic scattering (P2) are 
included.  Using both DD and QFE, we determine the �  eigenvalue for several different 
quadrature sets.  In DD, the �  converges to within 0.1 µsec-1 after increasing the number 
of angles beyond 24.  For QFE, the �  converges to within 0.1 µsec-1 even with four 
angles.  Thus, for DD to achieve the same level of accuracy as QFE, DD requires four to 
six times as many angles as QFE.  See Table 2 for the results. 

 

Table 2.  Compar ison of Eigenvalues for  Modified Planet Cr itical Sphere 

 

Number of Angles 

Diamond Difference 

Alpha (gen / � sec) 

Quadratic Finite Elem. 

Alpha (gen / � sec) 

4 12.002 9.854 

6 10.926 9.883 

8 10.512 9.888 

12 10.185 9.890 

16 10.061 9.891 

24 9.969 9.891 

32 9.936 9.891 

48 9.911 9.891 

64 9.902 9.891 

 

Conclusions 
In summary, we have developed a new higher-order SN algorithm for the solution of 

the 1D spherical transport equation using quadratic finite elements.  This method shows 
excellent convergence with relatively coarse angular resolution.  This convergence rate 
has been shown to be superior to conventional SN techniques for 1D spherical geometry.  
In the future, we plan to study and compare the QFE algorithm with Lathrop’s new 
Quadratic Continuous method. (Lathrop, 2000)  The goal will be to understand why the 
QFE method shows better convergence rates.  Also, we hope to extend the ideas of QFE 
to higher dimensions and to different geometries.  
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